Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties (1110.3752v2)

Published 17 Oct 2011 in hep-th and math.AG

Abstract: In this paper, we will outline computations of quantum sheaf cohomology for deformations of tangent bundles of toric varieties, for those deformations describable as deformations of toric Euler sequences. Quantum sheaf cohomology is a heterotic analogue of quantum cohomology, a quantum deformation of the classical product on sheaf cohomology groups, that computes nonperturbative corrections to analogues of (27*)3 couplings in heterotic string computations. Previous computations have relied on either physics-based GLSM techniques or computation-intensive brute-force Cech cohomology techniques. This paper describes methods for greatly simplifying mathematical computations, and derives more general results than previously obtainable with GLSM techniques. We will outline recent results (rigorous proofs will appear elsewhere).

Summary

We haven't generated a summary for this paper yet.