Recovering generalized homology from Floer homology: the complex oriented case (2404.02776v2)
Abstract: We associate an invariant called the completed Tate cohomology to a filtered circle equivariant spectrum and a complex oriented cohomology theory. We show that when the filtered spectrum is the spectral symplectic cohomology of a Liouville manifold, this invariant depends only on the stable homotopy type of the underlying manifold. We make explicit computations for several complex oriented cohomology theories, including Eilenberg-Maclane spectra, Morava K-theories, their integral counterparts, and complex K-theory. We show that the result for Eilenberg-Maclane spectra depends only on the rational homology, and we use the computations for Morava K-theory to recover the integral homology (as an ungraded group). In a different direction, we use the completed Tate cohomology computations for the complex K-theory to recover the complex K-theory of the underlying manifold from its equivariant filtered Floer homotopy type. A key Floer theoretic input is the computation of local equivariant Floer theory near the orbit of an autonomous Hamiltonian, which may be of independent interest from the perspective of dynamics.