Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Codes from Toric Surfaces (1203.4544v1)

Published 20 Mar 2012 in math.AG, cs.IT, and math.IT

Abstract: A theory for constructing quantum error correcting codes from Toric surfaces by the Calderbank-Shor-Steane method is presented. In particular we study the method on toric Hirzebruch surfaces. The results are obtained by constructing a dualizing differential form for the toric surface and by using the cohomology and the intersection theory of toric varieties. In earlier work the author developed methods to construct linear error correcting codes from toric varieties and derive the code parameters using the cohomology and the intersection theory on toric varieties. This method is generalized in section to construct linear codes suitable for constructing quantum codes by the Calderbank-Shor-Steane method. Essential for the theory is the existence and the application of a dualizing differential form on the toric surface. A.R. Calderbank, P.W. Shor and A.M. Steane produced stabilizer codes from linear codes containing their dual codes. These two constructions are merged to obtain results for toric surfaces. Similar merging has been done for algebraic curves with different methods by A. Ashikhmin, S. Litsyn and M.A. Tsfasman.

Citations (7)

Summary

We haven't generated a summary for this paper yet.