An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis
Abstract: In this work we numerically study the diffusive limit of run & tumble kinetic models for cell motion due to chemotaxis by means of asymptotic preserving schemes. It is well-known that the diffusive limit of these models leads to the classical Patlak-Keller-Segel macroscopic model for chemotaxis. We will show that the proposed scheme is able to accurately approximate the solutions before blow-up time for small parameter. Moreover, the numerical results indicate that the global solutions of the kinetic models stabilize for long times to steady states for all the analyzed parameter range. We also generalize these asymptotic preserving schemes to two dimensional kinetic models in the radial case. The blow-up of solutions is numerically investigated in all these cases.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.