Mining Patterns in Networks using Homomorphism
Abstract: In recent years many algorithms have been developed for finding patterns in graphs and networks. A disadvantage of these algorithms is that they use subgraph isomorphism to determine the support of a graph pattern; subgraph isomorphism is a well-known NP complete problem. In this paper, we propose an alternative approach which mines tree patterns in networks by using subgraph homomorphism. The advantage of homomorphism is that it can be computed in polynomial time, which allows us to develop an algorithm that mines tree patterns in arbitrary graphs in incremental polynomial time. Homomorphism however entails two problems not found when using isomorphism: (1) two patterns of different size can be equivalent; (2) patterns of unbounded size can be frequent. In this paper we formalize these problems and study solutions that easily fit within our algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.