Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hodge type theorems for arithmetic manifolds associated to orthogonal groups (1110.3049v3)

Published 13 Oct 2011 in math.NT, math.AG, and math.GT

Abstract: We show that special cycles generate a large part of the cohomology of locally symmetric spaces associated to orthogonal groups. We prove in particular that classes of totally geodesic submanifolds generate the cohomology groups of degree $n$ of compact congruence $p$-dimensional hyperbolic manifolds "of simple type" as long as $n$ is strictly smaller than $\frac{p}{3}$. We also prove that for connected Shimura varieties associated to $\OO (p,2)$ the Hodge conjecture is true for classes of degree $< \frac{p+1}{3}$. The proof of our general theorem makes use of the recent endoscopic classification of automorphic representations of orthogonal groups by \cite{ArthurBook}. As such our results are conditional on the hypothesis made in this book, whose proofs have only appear on preprint form so far; see the second paragraph of subsection \ref{org2} below.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube