Papers
Topics
Authors
Recent
2000 character limit reached

Normalized Mutual Information to evaluate overlapping community finding algorithms (1110.2515v2)

Published 11 Oct 2011 in physics.soc-ph, cs.SI, and physics.data-an

Abstract: Given the increasing popularity of algorithms for overlapping clustering, in particular in social network analysis, quantitative measures are needed to measure the accuracy of a method. Given a set of true clusters, and the set of clusters found by an algorithm, these sets of clusters must be compared to see how similar or different the sets are. A normalized measure is desirable in many contexts, for example assigning a value of 0 where the two sets are totally dissimilar, and 1 where they are identical. A measure based on normalized mutual information, [1], has recently become popular. We demonstrate unintuitive behaviour of this measure, and show how this can be corrected by using a more conventional normalization. We compare the results to that of other measures, such as the Omega index [2].

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.