Papers
Topics
Authors
Recent
Search
2000 character limit reached

Limit Theorems for Multifractal Products of Geometric Stationary Processes

Published 11 Oct 2011 in math.PR | (1110.2428v2)

Abstract: We investigate the properties of multifractal products of geometric Gaussian processes with possible long-range dependence and geometric Ornstein-Uhlenbeck processes driven by L\'{e}vy motion and their finite and infinite superpositions. We present the general conditions for the $L_q$ convergence of cumulative processes to the limiting processes and investigate their $q$-th order moments and R\'{e}nyi functions, which are nonlinear, hence displaying the multifractality of the processes as constructed. We also establish the corresponding scenarios for the limiting processes, such as log-normal, log-gamma, log-tempered stable or log-normal tempered stable scenarios.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.