Papers
Topics
Authors
Recent
2000 character limit reached

Basic statistics for probabilistic symbolic variables: a novel metric-based approach (1110.2295v2)

Published 11 Oct 2011 in stat.ME, math.ST, and stat.TH

Abstract: In data mining, it is usually to describe a set of individuals using some summaries (means, standard deviations, histograms, confidence intervals) that generalize individual descriptions into a typology description. In this case, data can be described by several values. In this paper, we propose an approach for computing basic statics for such data, and, in particular, for data described by numerical multi-valued variables (interval, histograms, discrete multi-valued descriptions). We propose to treat all numerical multi-valued variables as distributional data, i.e. as individuals described by distributions. To obtain new basic statistics for measuring the variability and the association between such variables, we extend the classic measure of inertia, calculated with the Euclidean distance, using the squared Wasserstein distance defined between probability measures. The distance is a generalization of the Wasserstein distance, that is a distance between quantile functions of two distributions. Some properties of such a distance are shown. Among them, we prove the Huygens theorem of decomposition of the inertia. We show the use of the Wasserstein distance and of the basic statistics presenting a k-means like clustering algorithm, for the clustering of a set of data described by modal numerical variables (distributional variables), on a real data set. Keywords: Wasserstein distance, inertia, dependence, distributional data, modal variables.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.