Papers
Topics
Authors
Recent
2000 character limit reached

A simple derivation of the Lindblad equation

Published 10 Oct 2011 in quant-ph | (1110.2122v2)

Abstract: We present a derivation of the Lindblad equation - an important tool for the treatment of non-unitary evolutions - that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.