Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Castelnuovo-Mumford regularity and the discreteness of $F$-jumping coefficients in graded rings (1110.2093v3)

Published 10 Oct 2011 in math.AC and math.AG

Abstract: In this paper we show that the sets of $F$-jumping coefficients of ideals form discrete sets in certain graded $F$-finite rings. We do so by giving a criterion based on linear bounds for the growth of the Castelnuovo-Mumford regularity of certain ideals. We further show that these linear bounds exists for one-dimensional rings and for ideals of (most) two-dimensional domains. We conclude by applying our technique to prove that all sets of $F$-jumping coefficients of all ideals in the determinantal ring given as the quotient by $2\times 2$ minors in a $2\times 3$ matrix of indeterminates form discrete sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.