2000 character limit reached
Quantitative Dunford-Pettis property
Published 6 Oct 2011 in math.FA | (1110.1243v2)
Abstract: We investigate possible quantifications of the Dunford-Pettis property. We show, in particular, that the Dunford-Pettis property is automatically quantitative in a sense. Further, there are two incomparable mutually dual stronger versions of a quantitative Dunford-Pettis property. We prove that $L1$ spaces and $C(K)$ spaces posses both of them. We also show that several natural measures of weak non-compactness are equal in $L1$ spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.