Convergence of gradient-based algorithms for the Hartree-Fock equations (1109.5473v2)
Abstract: The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in by Cances and Le Bris in 2000, but, to our knowledge, no complete convergence proof has been published. In this paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Lojasiewicz. Then, expanding upon the analysis of Cances and Le Bris, we prove convergence results for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates on the convergence rate. We compare these with numerical results for the algorithms studied.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.