Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A bialgebra axiom and the Dold-Kan correspondence (1109.5441v2)

Published 26 Sep 2011 in math.CT, math.AT, and math.KT

Abstract: We introduce a bialgebra axiom for a pair $(c,\ell)$ of a colax-monoidal and a lax-monoidal structures on a functor $F\colon \mathscr{M}_1\to \mathscr{M}_2$ between two (strict) symmetric monoidal categories. This axiom can be regarded as a weakening of the property of $F$ to be a strict symmetric monoidal functor. We show that this axiom transforms well when passing to the adjoint functor or to the categories of monoids. Rather unexpectedly, this axiom holds for the Alexander-Whitney colax-monoidal and the Eilenberg-MacLane lax-monoidal structures on the normalized chain complex functor in the Dold-Kan correspondence. This fact, proven in Section 2, opens up a way for many applications, which we will consider in our sequel paper(s).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.