Papers
Topics
Authors
Recent
2000 character limit reached

On Sums of SL(3,Z) Kloosterman Sums

Published 21 Sep 2011 in math.NT | (1109.4661v2)

Abstract: We show that sums of the SL(3,Z) long element Kloosterman sum against a smooth weight function have cancellation due to the variation in argument of the Kloosterman sums, when each modulus is at least the square root of the other. Our main tool is Li's generalization of the Kuznetsov formula on SL(3,R), which has to date been prohibitively difficult to apply. We first obtain analytic expressions for the weight functions on the Kloosterman sum side by converting them to Mellin-Barnes integral form. This allows us to relax the conditions on the test function and to produce a partial inversion formula suitable for studying sums of the long-element SL(3,Z) Kloosterman sums.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.