Papers
Topics
Authors
Recent
2000 character limit reached

A geometrical proof of the persistence of normally hyperbolic submanifolds (1109.3280v1)

Published 15 Sep 2011 in math.DS

Abstract: We present a simple, computation free and geometrical proof of the following classical result: for a diffeomorphism of a manifold, any compact submanifold which is invariant and normally hyperbolic persists under small perturbations of the diffeomorphism. The persistence of a Lipschitz invariant submanifold follows from an application of the Schauder fixed point theorem to a graph transform, while smoothness and uniqueness of the invariant submanifold are obtained through geometrical arguments. Moreover, our proof provides a new result on persistence and regularity of "topologically" normally hyperbolic submanifolds, but without any uniqueness statement.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.