Local variational principle concerning entropy of a sofic group action (1109.3244v1)
Abstract: Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of countable sofic groups admitting a generating measurable partition with finite entropy; and then David Kerr and Hanfeng Li developed an operator-algebraic approach to actions of countable sofic groups not only on a standard probability space but also on a compact metric space, and established the global variational principle concerning measure-theoretic and topological entropy in this sofic context. By localizing these two kinds of entropy, in this paper we prove a local version of the global variational principle for any finite open cover of the space, and show that these local measure-theoretic and topological entropy coincide with their classical counterparts when the acting group is an infinite amenable group.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.