Papers
Topics
Authors
Recent
Search
2000 character limit reached

Review on Feature Selection Techniques and the Impact of SVM for Cancer Classification using Gene Expression Profile

Published 6 Sep 2011 in cs.CE, cs.ET, cs.LG, and q-bio.QM | (1109.1062v1)

Abstract: The DNA microarray technology has modernized the approach of biology research in such a way that scientists can now measure the expression levels of thousands of genes simultaneously in a single experiment. Gene expression profiles, which represent the state of a cell at a molecular level, have great potential as a medical diagnosis tool. But compared to the number of genes involved, available training data sets generally have a fairly small sample size for classification. These training data limitations constitute a challenge to certain classification methodologies. Feature selection techniques can be used to extract the marker genes which influence the classification accuracy effectively by eliminating the un wanted noisy and redundant genes This paper presents a review of feature selection techniques that have been employed in micro array data based cancer classification and also the predominant role of SVM for cancer classification.

Citations (83)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.