Ideas of E.~Cartan and S.~Lie in modern geometry: $G$-structures and differential equations. Lecture 4 (1109.0751v1)
Abstract: This is the lecture 4 of a mini-course of 4 lectures. Our purpose of this mini-curse is to explain some ideas of E. Cartan and S. Lie when we study differential geometry, particularly we will to explain the Cartan reduction method. The Cartan reduction method is a technique in Differential Geometry for determining whether two geometrical structure are the same up to a diffeomorphism. This method use new tools of differential geometry as principal bundles, $G$-structures and jets theory. We start with an example of a $G$-structure: the 3-webs in $\mathbb{R}{2}$. Here we use the Cartan method to classify the differential equations but not to resolve. This is a classification can be a weak classification in the sense of not involving all the structural invariants.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.