Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lipschitz regularity for inner-variational equations

Published 4 Sep 2011 in math.AP and math.CV | (1109.0720v1)

Abstract: We obtain Lipschitz regularity results for a fairly general class of nonlinear first-order PDEs. These equations arise from the inner variation of certain energy integrals. Even in the simplest model case of the Dirichlet energy the inner-stationary solutions need not be differentiable everywhere; the Lipschitz continuity is the best possible. But the proofs, even in the Dirichlet case, turn out to relay on topological arguments. The appeal to the inner-stationary solutions in this context is motivated by the classical problems of existence and regularity of the energy-minimal deformations in the theory of harmonic mappings and certain mathematical models of nonlinear elasticity; specifically, neo-Hookian type problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.