Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Half-turn symmetric FPLs with rare couplings and tilings of hexagons (1109.0366v1)

Published 2 Sep 2011 in math.CO

Abstract: In this work, we put to light a formula that relies the number of fully packed loop configurations (FPLs) associated to a given coupling pi to the number of half-turn symmetric FPLs (HTFPLs) of even size whose coupling is a punctured version of the coupling pi. When the coupling pi is the coupling with all arches parallel pi0 (the "rarest" one), this formula states the equality of the number of corresponding HTFPLs to the number of cyclically-symmetric plane partition of the same size. We provide a bijective proof of this fact. In the case of HTFPLs odd size, and although there is no similar expression, we study the number of HTFPLs whose coupling is a slit version of pi_0, and put to light new puzzling enumerative coincidence involving countings of tilings of hexagons and various symmetry classes of FPLs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.