The convex hull for a random acceleration process in two dimensions (1108.5455v1)
Abstract: We compute exactly the mean perimeter <L(T)> and the mean area <A(T)> of the convex hull of a random acceleration process of duration T in two dimensions. We use an exact mapping that relates, via Cauchy's formulae, the computation of the perimeter and the area of the convex hull of an arbitrary two dimensional stochastic process [x(t); y(t)] to the computation of the extreme value statistics of the associated one dimensional component process x(t). The latter can be computed exactly for the one dimensional random acceleration process even though the process in non-Markovian. Physically, our results are relevant in describing theaverage shape of a semi-flexible ideal polymer chain in two dimensions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.