Phase Transition in Dually Weighted Colored Tensor Models (1108.5389v2)
Abstract: Tensor models are a generalization of matrix models (their graphs being dual to higher-dimensional triangulations) and, in their colored version, admit a 1/N expansion and a continuum limit. We introduce a new class of colored tensor models with a modified propagator which allows us to associate weight factors to the faces of the graphs, i.e. to the bones (or hinges) of the triangulation, where curvature is concentrated. They correspond to dynamical triangulations in three and higher dimensions with generalized amplitudes. We solve analytically the leading order in 1/N of the most general model in arbitrary dimensions. We then show that a particular model, corresponding to dynamical triangulations with a non-trivial measure factor, undergoes a third-order phase transition in the continuum characterized by a jump in the susceptibility exponent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.