Multiple cover formula of generalized DT invariants I: parabolic stable pairs
Abstract: In this paper, we introduce the notion of parabolic stable pairs on Calabi-Yau 3-folds and invariants counting them. By applying the wall-crossing formula developed by Joyce-Song, Kontsevich-Soibelman, we see that they are related to generalized Donaldson-Thomas invariants counting one dimensional semistable sheaves on Calabi-Yau 3-folds. Consequently, the conjectural multiple cover formula of generalized DT invariants is shown to be equivalent to a certain product expansion formula of the generating series of parabolic stable pair invariants. The application of this result to the multiple cover formula will be pursued in the subsequent paper.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.