Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 32 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Penrose-type inequalities with a Euclidean background (1108.4042v2)

Published 19 Aug 2011 in math.DG

Abstract: The Riemannian Penrose inequality (RPI) bounds from below the ADM mass of asymptotically flat manifolds of nonnegative scalar curvature in terms of the total area of all outermost compact minimal surfaces. The general form of the RPI is currently known for manifolds of dimension up to seven. In the present work, we prove a Penrose-like inequality that is valid in all dimensions, for conformally flat manifolds. Our inequality treats the area contributions of the minimal surfaces in a more favorable way than the RPI, at the expense of using the smaller Euclidean area (rather than the intrinsic area). We give an example in which our estimate is sharper than the RPI when many minimal surfaces are present. We do not require the minimal surfaces to be outermost. We also generalize the technique to allow for metrics conformal to a scalar-flat (not necessarily Euclidean) background, and prove a Penrose-type inequality without an assumption on the sign of scalar curvature. Finally, we derive a new lower bound for the ADM mass of a conformally flat, asymptotically flat manifold containing any number of zero area singularities.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.