Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Expectation Maximization based algorithms for inference in hidden Markov models (1108.3968v3)

Published 19 Aug 2011 in math.ST and stat.TH

Abstract: The Expectation Maximization (EM) algorithm is a versatile tool for model parameter estimation in latent data models. When processing large data sets or data stream however, EM becomes intractable since it requires the whole data set to be available at each iteration of the algorithm. In this contribution, a new generic online EM algorithm for model parameter inference in general Hidden Markov Model is proposed. This new algorithm updates the parameter estimate after a block of observations is processed (online). The convergence of this new algorithm is established, and the rate of convergence is studied showing the impact of the block size. An averaging procedure is also proposed to improve the rate of convergence. Finally, practical illustrations are presented to highlight the performance of these algorithms in comparison to other online maximum likelihood procedures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.