Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle (1108.3769v2)

Published 18 Aug 2011 in math-ph, math.CA, math.MP, and math.RA

Abstract: A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space $E$, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators among themselves as a consequence of a geometric property, namely, that the connection has curvature zero.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.