Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Jordan algebras and orthogonal polynomials (1108.3531v1)

Published 17 Aug 2011 in math.CA, math-ph, and math.MP

Abstract: We illustrate how Jordan algebras can provide a framework for the interpretation of certain classes of orthogonal polynomials. The big -1 Jacobi polynomials are eigenfunctions of a first order operator of Dunkl type. We consider an algebra that has this operator (up to constants) as one of its three generators and whose defining relations are given in terms of anticommutators. It is a special case of the Askey-Wilson algebra AW(3). We show how the structure and recurrence relations of the big -1 Jacobi polynomials are obtained from the representations of this algebra. We also present ladder operators for these polynomials and point out that the big -1 Jacobi polynomials satisfy the Hahn property with respect to a generalized Dunkl operator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.