Convex risk measures for good deal bounds (1108.1273v1)
Abstract: We study convex risk measures describing the upper and lower bounds of a good deal bound, which is a subinterval of a no-arbitrage pricing bound. We call such a convex risk measure a good deal valuation and give a set of equivalent conditions for its existence in terms of market. A good deal valuation is characterized by several equivalent properties and in particular, we see that a convex risk measure is a good deal valuation only if it is given as a risk indifference price. An application to shortfall risk measure is given. In addition, we show that the no-free-lunch (NFL) condition is equivalent to the existence of a relevant convex risk measure which is a good deal valuation. The relevance turns out to be a condition for a good deal valuation to be reasonable. Further we investigate conditions under which any good deal valuation is relevant.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.