Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Surrogate Loss Functions for Contextual Pricing with Transaction Data (2202.10944v2)

Published 16 Feb 2022 in cs.LG, cs.IR, and stat.ML

Abstract: We study an off-policy contextual pricing problem where the seller has access to samples of prices that customers were previously offered, whether they purchased at that price, and auxiliary features describing the customer and/or item being sold. This is in contrast to the well-studied setting in which samples of the customer's valuation (willingness to pay) are observed. In our setting, the observed data is influenced by the previous pricing policy, and we do not know how customers would have responded to alternative prices. We introduce suitable loss functions for this setting that can be directly optimized to find an effective pricing policy with expected revenue guarantees, without the need for estimation of an intermediate demand function. We focus on convex loss functions. This is particularly relevant when linear pricing policies are desired for interpretability reasons, resulting in a tractable convex revenue optimization problem. We propose generalized hinge and quantile pricing loss functions that price at a multiplicative factor of the conditional expected valuation or a particular quantile of the prices that sold, despite the valuation data not being observed. We prove expected revenue bounds for these pricing policies respectively when the valuation distribution is log-concave, and we provide generalization bounds for the finite sample case. Finally, we conduct simulations on both synthetic and real-world data to demonstrate that this approach is competitive with, and in some settings outperforms, state-of-the-art methods in contextual pricing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Max Biggs (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.