Papers
Topics
Authors
Recent
2000 character limit reached

Anderson localization or nonlinear waves? A matter of probability

Published 3 Aug 2011 in cond-mat.dis-nn, cond-mat.other, nlin.CD, and nlin.PS | (1108.0899v1)

Abstract: In linear disordered systems Anderson localization makes any wave packet stay localized for all times. Its fate in nonlinear disordered systems is under intense theoretical debate and experimental study. We resolve this dispute showing that at any small but finite nonlinearity (energy) value there is a finite probability for Anderson localization to break up and propagating nonlinear waves to take over. It increases with nonlinearity (energy) and reaches unity at a certain threshold, determined by the initial wave packet size. Moreover, the spreading probability stays finite also in the limit of infinite packet size at fixed total energy. These results are generalized to higher dimensions as well.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.