Papers
Topics
Authors
Recent
2000 character limit reached

A monomial matrix formalism to describe quantum many-body states (1108.0531v1)

Published 2 Aug 2011 in quant-ph

Abstract: We propose a framework to describe and simulate a class of many-body quantum states. We do so by considering joint eigenspaces of sets of monomial unitary matrices, called here "M-spaces"; a unitary matrix is monomial if precisely one entry per row and column is nonzero. We show that M-spaces encompass various important state families, such as all Pauli stabilizer states and codes, the AKLT model, Kitaev's (abelian and non-abelian) anyon models, group coset states, W states and the locally maximally entanglable states. We furthermore show how basic properties of M-spaces can transparently be understood by manipulating their monomial stabilizer groups. In particular we derive a unified procedure to construct an eigenbasis of any M-space, yielding an explicit formula for each of the eigenstates. We also discuss the computational complexity of M-spaces and show that basic problems, such as estimating local expectation values, are NP-hard. Finally we prove that a large subclass of M-spaces---containing in particular most of the aforementioned examples---can be simulated efficiently classically with a unified method.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.