Papers
Topics
Authors
Recent
2000 character limit reached

Capturing correlations in chaotic diffusion by approximation methods (1107.5293v2)

Published 26 Jul 2011 in math-ph, cond-mat.stat-mech, math.MP, and nlin.CD

Abstract: We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line which contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, whilst the third method approximates Markov partitions and transition matrices by using the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in case of dynamics where exact results for the diffusion coefficient are not available.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.