Papers
Topics
Authors
Recent
Search
2000 character limit reached

Twistorial phase space for complex Ashtekar variables

Published 25 Jul 2011 in gr-qc | (1107.5002v2)

Abstract: We generalise the SU(2) spinor framework of twisted geometries developed by Dupuis, Freidel, Livine, Speziale and Tambornino to the Lorentzian case, that is the group SL(2,C). We show that the phase space for complex valued Ashtekar variables on a spinnetwork graph can be decomposed in terms of twistorial variables. To every link there are two twistors---one to each boundary point---attached. The formalism provides a new derivation of the solution space of the simplicity constraints of loop quantum gravity. Key properties of the EPRL spinfoam model are perfectly recovered.

Citations (38)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.