Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Tail estimates for norms of sums of log-concave random vectors (1107.4070v1)

Published 20 Jul 2011 in math.PR, math.FA, and math.MG

Abstract: We establish new tail estimates for order statistics and for the Euclidean norms of projections of an isotropic log-concave random vector. More generally, we prove tail estimates for the norms of projections of sums of independent log-concave random vectors, and uniform versions of these in the form of tail estimates for operator norms of matrices and their sub-matrices in the setting of a log-concave ensemble. This is used to study a quantity $A_{k,m}$ that controls uniformly the operator norm of the sub-matrices with $k$ rows and $m$ columns of a matrix $A$ with independent isotropic log-concave random rows. We apply our tail estimates of $A_{k,m}$ to the study of Restricted Isometry Property that plays a major role in the Compressive Sensing theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.