Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Asymptotic zero distribution of a class of hypergeometric polynomials (1107.2236v1)

Published 12 Jul 2011 in math.CA

Abstract: We prove that the zeros of ${}2F_1(-n,\frac{n+1}{2};\frac{n+3}{2};z)$ asymptotically approach the section of the lemniscate ${z: |z(1-z)2|=4/27; \textrm{Re}(z)>1/3}$ as $n\rightarrow \infty$. In papers (cf. \cite{KMF}, \cite{orive}), Mart\'inez-Finkelshtein and Kuijlaars and their co-authors have used Riemann-Hilbert methods to derive the asymptotic zero distribution of Jacobi polynomials $P_n{(\alpha_n,\beta_n)}$ when the limits $\ds A=\lim{n\rightarrow \infty}\frac{\alpha_n}{n}$ and $\ds B=\lim_{n\rightarrow \infty}\frac{\beta_n}{n}$ exist and lie in the interior of certain specified regions in the $AB$-plane. Our result corresponds to one of the transitional or boundary cases for Jacobi polynomials in the Kuijlaars Mart\'inez-Finkelshtein classification.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.