Tethered Monte Carlo: Managing rugged free-energy landscapes with a Helmholtz-potential formalism
Abstract: Tethering methods allow us to perform Monte Carlo simulations in ensembles with conserved quantities. Specifically, one couples a reservoir to the physical magnitude of interest, and studies the statistical ensemble where the total magnitude (system+reservoir) is conserved. The reservoir is actually integrated out, which leaves us with a fluctuation-dissipation formalism that allows us to recover the appropriate Helmholtz effective potential with great accuracy. These methods are demonstrating a remarkable flexibility. In fact, we illustrate two very different applications: hard spheres crystallization and the phase transition of the diluted antiferromagnet in a field (the physical realization of the random field Ising model). The tethered approach holds the promise to transform cartoon drawings of corrugated free-energy landscapes into real computations. Besides, it reduces the algorithmic dynamic slowing-down, probably because the conservation law holds non-locally.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.