Conjugacy growth of finitely generated groups (1107.1826v4)
Abstract: We show that every non-decreasing function $f\colon \mathbb N\to \mathbb N$ bounded from above by $an$ for some $a\ge 1$ can be realized (up to a natural equivalence) as the conjugacy growth function of a finitely generated group. We also construct a finitely generated group $G$ and a subgroup $H\le G$ of index 2 such that $H$ has only 2 conjugacy classes while the conjugacy growth of $G$ is exponential. In particular, conjugacy growth is not a quasi-isometry invariant.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.