Competing synapses with two timescales: a basis for learning and forgetting (1107.1621v1)
Abstract: Competitive dynamics are thought to occur in many processes of learning involving synaptic plasticity. Here we show, in a game theory-inspired model of synaptic interactions, that the competition between synapses in their weak and strong states gives rise to a natural framework of learning, with the prediction of memory inherent in a timescale for `forgetting' a learned signal. Among our main results is the prediction that memory is optimized if the weak synapses are really weak, and the strong synapses are really strong. Our work admits of many extensions and possible experiments to test its validity, and in particular might complement an existing model of reaching, which has strong experimental support.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.