Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Competing synapses with two timescales: a basis for learning and forgetting (1107.1621v1)

Published 8 Jul 2011 in cond-mat.dis-nn, nlin.AO, and q-bio.NC

Abstract: Competitive dynamics are thought to occur in many processes of learning involving synaptic plasticity. Here we show, in a game theory-inspired model of synaptic interactions, that the competition between synapses in their weak and strong states gives rise to a natural framework of learning, with the prediction of memory inherent in a timescale for `forgetting' a learned signal. Among our main results is the prediction that memory is optimized if the weak synapses are really weak, and the strong synapses are really strong. Our work admits of many extensions and possible experiments to test its validity, and in particular might complement an existing model of reaching, which has strong experimental support.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.