Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The frequency-dependent Wright-Fisher model: diffusive and non-diffusive approximations (1107.1549v4)

Published 8 Jul 2011 in q-bio.PE and math.AP

Abstract: We study a class of processes that are akin to the Wright-Fisher model, with transition probabilities weighted in terms of the frequency-dependent fitness of the population types. By considering an approximate weak formulation of the discrete problem, we are able to derive a corresponding continuous weak formulation for the probability density. Therefore, we obtain a family of partial differential equations (PDE) for the evolution of the probability density, and which will be an approximation of the discrete process in the joint large population, small time-steps and weak selection limit. If the fitness functions are sufficiently regular, we can recast the weak formulation in a more standard formulation, without any boundary conditions, but supplemented by a number of conservation laws. The equations in this family can be purely diffusive, purely hyperbolic or of convection-diffusion type, with frequency dependent convection. The particular outcome will depend on the assumed scalings. The diffusive equations are of the degenerate type; using a duality approach, we also obtain a frequency dependent version of the Kimura equation without any further assumptions. We also show that the convective approximation is related to the replicator dynamics and provide some estimate of how accurate is the convective approximation, with respect to the convective-diffusion approximation. In particular, we show that the mode, but not the expected value, of the probability distribution is modelled by the replicator dynamics. Some numerical simulations that illustrate the results are also presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.