Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Symbolic Derivation of Mean-Field PDEs from Lattice-Based Models (1506.08527v3)

Published 29 Jun 2015 in cs.SC, cs.CE, math.AP, and nlin.AO

Abstract: Transportation processes, which play a prominent role in the life and social sciences, are typically described by discrete models on lattices. For studying their dynamics a continuous formulation of the problem via partial differential equations (PDE) is employed. In this paper we propose a symbolic computation approach to derive mean-field PDEs from a lattice-based model. We start with the microscopic equations, which state the probability to find a particle at a given lattice site. Then the PDEs are formally derived by Taylor expansions of the probability densities and by passing to an appropriate limit as the time steps and the distances between lattice sites tend to zero. We present an implementation in a computer algebra system that performs this transition for a general class of models. In order to rewrite the mean-field PDEs in a conservative formulation, we adapt and implement symbolic integration methods that can handle unspecified functions in several variables. To illustrate our approach, we consider an application in crowd motion analysis where the dynamics of bidirectional flows are studied. However, the presented approach can be applied to various transportation processes of multiple species with variable size in any dimension, for example, to confirm several proposed mean-field models for cell motility.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.