Mean field games equations with quadratic Hamiltonian: a specific approach (1106.3269v1)
Abstract: Mean field games models describing the limit of a large class of stochastic differential games, as the number of players goes to $+\infty$, have been introduced by J.-M. Lasry and P.-L. Lions. We use a change of variables to transform the mean field games (MFG) equations into a system of simpler coupled partial differential equations, in the case of a quadratic Hamiltonian. This system is then used to exhibit a monotonic scheme to build solutions of the MFG equations. Effective numerical methods based on this constructive scheme are presented and numerical experiments are carried out.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.