Papers
Topics
Authors
Recent
2000 character limit reached

Automatically Training a Problematic Dialogue Predictor for a Spoken Dialogue System

Published 9 Jun 2011 in cs.AI | (1106.1817v1)

Abstract: Spoken dialogue systems promise efficient and natural access to a large variety of information sources and services from any phone. However, current spoken dialogue systems are deficient in their strategies for preventing, identifying and repairing problems that arise in the conversation. This paper reports results on automatically training a Problematic Dialogue Predictor to predict problematic human-computer dialogues using a corpus of 4692 dialogues collected with the 'How May I Help You' (SM) spoken dialogue system. The Problematic Dialogue Predictor can be immediately applied to the system's decision of whether to transfer the call to a human customer care agent, or be used as a cue to the system's dialogue manager to modify its behavior to repair problems, and even perhaps, to prevent them. We show that a Problematic Dialogue Predictor using automatically-obtainable features from the first two exchanges in the dialogue can predict problematic dialogues 13.2% more accurately than the baseline.

Citations (81)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.