Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved Algorithm for the Isogeny Problem for Ordinary Elliptic Curves

Published 31 May 2011 in math.NT and cs.DS | (1105.6331v1)

Abstract: A low storage algorithm for constructing isogenies between ordinary elliptic curves was proposed by Galbraith, Hess and Smart (GHS). We give an improvement of this algorithm by modifying the pseudorandom walk so that lower-degree isogenies are used more frequently. This is motivated by the fact that high degree isogenies are slower to compute than low degree ones. We analyse the running time of the parallel collision search algorithm when the partitioning is uneven. We also give experimental results. We conclude that our algorithm is around 14 times faster than the GHS algorithm when constructing horizontal isogenies between random isogenous elliptic curves over a 160-bit prime field. The results apply to generic adding walks and the more general group action inverse problem; a speed-up is obtained whenever the cost of computing edges in the graph varies significantly.

Citations (41)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.