Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Divide-and-Conquer Subgoal-Ordering Algorithm for Speeding up Logic Inference (1105.5442v1)

Published 27 May 2011 in cs.AI

Abstract: It is common to view programs as a combination of logic and control: the logic part defines what the program must do, the control part -- how to do it. The Logic Programming paradigm was developed with the intention of separating the logic from the control. Recently, extensive research has been conducted on automatic generation of control for logic programs. Only a few of these works considered the issue of automatic generation of control for improving the efficiency of logic programs. In this paper we present a novel algorithm for automatic finding of lowest-cost subgoal orderings. The algorithm works using the divide-and-conquer strategy. The given set of subgoals is partitioned into smaller sets, based on co-occurrence of free variables. The subsets are ordered recursively and merged, yielding a provably optimal order. We experimentally demonstrate the utility of the algorithm by testing it in several domains, and discuss the possibilities of its cooperation with other existing methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.