Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A unified approach to Stein characterizations (1105.4925v3)

Published 25 May 2011 in math.PR

Abstract: This article deals with Stein characterizations of probability distributions. We provide a general framework for interpreting these in terms of the parameters of the underlying distribution. In order to do so we introduce two concepts (a class of functions and an operator) which generalize those which were developed in the 70's by Charles Stein and Louis Chen for characterizing the Gaussian and the Poisson distributions. Our methodology (i) allows for writing many (if not all) known univariate Stein characterizations, (ii) permits to identify clearly minimal conditions under which these results hold and (iii) provides a straightforward tool for constructing new Stein characterizations. Our parametric interpretation of Stein characterizations also raises a number of questions which we outline at the end of the paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.