Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Integrable hierarchies and the mirror model of local CP1 (1105.4508v1)

Published 23 May 2011 in math.AG, hep-th, math-ph, math.MP, math.SG, and nlin.SI

Abstract: We study structural aspects of the Ablowitz-Ladik (AL) hierarchy in the light of its realization as a two-component reduction of the two-dimensional Toda hierarchy, and establish new results on its connection to the Gromov-Witten theory of local CP1. We first of all elaborate on the relation to the Toeplitz lattice and obtain a neat description of the Lax formulation of the AL system. We then study the dispersionless limit and rephrase it in terms of a conformal semisimple Frobenius manifold with non-constant unit, whose properties we thoroughly analyze. We build on this connection along two main strands. First of all, we exhibit a manifestly local bi-Hamiltonian structure of the Ablowitz-Ladik system in the zero-dispersion limit. Secondarily, we make precise the relation between this canonical Frobenius structure and the one that underlies the Gromov-Witten theory of the resolved conifold in the equivariantly Calabi-Yau case; a key role is played by Dubrovin's notion of "almost duality" of Frobenius manifolds. As a consequence, we obtain a derivation of genus zero mirror symmetry for local CP1 in terms of a dual logarithmic Landau-Ginzburg model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.