Papers
Topics
Authors
Recent
2000 character limit reached

Decomposition algorithms for globally solving mathematical programs with affine equilibrium constraints (1105.3343v1)

Published 17 May 2011 in math.OC

Abstract: A mathematical programming problem with affine equilibrium constraints (AMPEC) is a bilevel programming problem where the lower one is a parametric affine variational inequality. We formulate some classes of bilevel programming in forms of MPEC. Then we use a regularization technique to formulate the resulting problem as a mathematical program with an additional constraint defined by the difference of two convex functions (DC function). A main feature of this DC decomposition is that the second component depends upon only the parameter in the lower problem. This property allows us to develop branch-and-bound algorithms for globally solving AMPEC where the adaptive rectangular bisection takes place only in the space of the parameter. As an example, we use the proposed algorithm to solve a bilevel Nash-Cournot equilibrium market model. Computational results show the efficiency of the proposed algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.