A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks (1105.1513v2)
Abstract: We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.