Papers
Topics
Authors
Recent
2000 character limit reached

First-Exit Times of an Inverse Gaussian Process (1105.1468v3)

Published 7 May 2011 in math.PR

Abstract: The first-exit time process of an inverse Gaussian L\'evy process is considered. The one-dimensional distribution functions of the process are obtained. They are not infinitely divisible and the tail probabilities decay exponentially. These distribution functions can also be viewed as distribution functions of supremum of the Brownian motion with drift. The density function is shown to solve a fractional PDE and the result is also generalized to tempered stable subordinators. The subordination of this process to the Brownian motion is considered and the underlying PDE of the subordinated process is obtained. The infinite divisibility of the first-exit time of a $\beta$-stable subordinator is also discussed.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.